Presented by: Eric Franzosa
View Abstract
Metatranscriptomics (MTX) has become an increasingly practical way to profile the functional activity of microbial communities in situ. However, MTX remains underutilized due to experimental and computational limitations. The latter are complicated by non-independent changes in both RNA transcript levels and their underlying genomic DNA copies (as microbes simultaneously change their overall abundance in the population and regulate individual transcripts), genetic plasticity (as whole loci are frequently gained and lost in microbial lineages), and measurement compositionality and zero-inflation. Here, we present a systematic evaluation of and recommendations for differential expression (DE) analysis in MTX. We designed and assessed six statistical models for DE discovery in MTX that incorporate different combinations of DNA and RNA normalization and assumptions about the underlying changes of gene copies or species abundance within communities. We evaluated these models on multiple simulated and real multi-omic datasets. Models adjusting transcripts relative to their encoding gene copies as a covariate were significantly more accurate in identifying DE from MTX in both simulated and real datasets. Moreover, we show that when paired DNA measurements (metagenomic data, MGX) are not available, models normalizing MTX measurements within-species while also adjusting for total-species RNA balance sensitivity, specificity, and interpretability of DE detection, as does filtering likely technical zeros. The efficiency and accuracy of these models pave the way for more effective MTX-based DE discovery in microbial communities.
Eric Franzosa – Poster Description (Audio Clip)